
~. USER HELP ·using the ORACLE Call Interface
Effectively

David McGoveran Is
co-founder of DataBase

Associates. a strategic

consulting services

firm in Morgan Hill.

California. He is also

President of Alternative

Technologies, a

development services.

firm based in Santa

Cruz. California.

W ith any 3rd-generation lan
guage (3GL) software proj
ect that involves relational

d atabase management, developers
must not only design a supporting da
tabase schema and load it with data,
but also implement a number of ac
cess routines in order to enable appli
cation programs to manipulate the data in the database.

These routines are usually implementations of a spe
cific application function, rather than reusable tools.
Common practice among developers is to implement
these routines by writing them in a 3GL and embedding
the SQL statements in the source file. To better handle
these foreign statements, the source files are "pre-pro
cessed" prior to compilation. This is the "embedded SQL"
approach of Oracle's Pro•c.

An alternative approach is programming with a
function call interface, such as the ORACLE Call Inter
face (OCI). While many developers consider this ap
proach heresy, I personally have found it to be the
most effective. Vendor-supplied fu nction libraries are
familiar to most programmers, whereas the "embedded
SQL" approach with precompilation takes some getting
used to. The OCI offers a means to alleviate a number of
other problems found with the embedded approach.

Although I will use 3GL projects as the prototypes in
this article, many of the same comment:> are relevant to
4th-generation language (4GL) implementations as well.
Most 4GLs (including Oracle's SQeForms) require some
kind of "compilation" step. However, access to SQL via a
4GL usually looks like 3GL-wrinen code (albeit at a higher

· - - "" :"-... , """"l -

level of utility) using dynamic embedded SQL. This ap
proach does not alleviate certain problems, which I dis
cuss below.

Throughout this article, I will use the term 'com
mand' or 'SQL command' to stand for a sequence of SQL
statements. For example, PUSQL blocks certainly qualify
as SQL commands. Although this article discusses SQL,
the discussion applies equally to any DML (data manipu
lation language) or DDL (data definition language) for
relational DBMSs.

Nature of the Problem
One of the objectives of embedded SQL is to provide for
portability. This is a fine objective, especially if you are
using more than one DBMS product throughout a com
pany, or if you are a software vendor whose produce
must work with several relational DBMSs. Unfonunately.
portability is difficult 10 attain. Even if the DRMSs use SQL
statements that are compatible syntaclically, the chances
are good that semantics (results and tr.rnsaction l"X:ha,·
ior) will differ.

In my experience, the ahility to reuse and maintain
code effectively is more important than portability to
end users. However. embedded SQL makes reusable

SUMMER I«•XJ (>,\

and maintainable code difficult to actain, especially
on large applications.

Even w ith dynamic embedded SQL using the PRE
P ARE construct or its equivalent, there are certain limita
tions that restrict the flexibility of the resulting modules.
In most implementations, PREP ARE takes no more than
one SQL statement, so 3rd-generation language code is
written to support each occurrence.

There are a number of problems with the embedded
SQL approach:

• Since each of the supporting 3GL routines has a
specific rigid function, they tend to proliferate.

If the SQL pre-processor generates "compiled" SQL, it
may use the program name to catalog and invoke the
compiled SQL.

This defeats the modularity of the 3GL (or 4GL) code,
making it very difficult-or even impossible-to create
shared libraries of database access routines---with
profound effects on the strucrure of applications, the time
and resources required to design and develop them,
and their uniformity and efficiency. In fact, I have found
that it promotes bottom-up replacement of record-at-a
time file I/0 with relational data access routines, rather
than top-down design of relational applications. The use
of positioned cursors especially promotes such anti-rela
tional design.

SOFTWARE FOR DISTRIBUTORS

Apogee®!DMS

• Order Entry
• Purchasing
• Inventory Management
• Billing
• Accounts Receivable
• Accounts Payable
• General Ledger I Financial Reporting
• Bill of Materials
• Work Orders
• Job Costing

Leading the way in ORACLE® based
solutions for the distribution industry

APOGEE Systems
(704) 588-0068

11616 Wtlmar Blvd.
POBox7207
Charlotte, NC 28241

CIRCLE NO. 23 ON READER SERVICE CARO

• The pre-compilation phase is cumbersome, adding a
development phase that is n ot always compatible
with software management tools.

For example, symbolic debuggers do not show the origi
nal embedded SQL source code, but rather its processed
form, making it difficult to track down compilation and
runtime errors.

• 1be embedded relational database language is

"mixed" with the 3GL so that source code control is
difficult. The difference between the procedural and
non-procedural components of the code creates what
is sometimes referred to as an "impedance
m ism atch."

Coordination of function between the 3GL and SQL is
difficult to manage when either language is changed.
Even if programs are treated as database-dependent ob
jects, this information is not available to 3GL source code
management tools.

Of course, various CASE produets alleviate this
problem, but there is no general solution. In a UNIX envi
ronment. there is no reasonable way to manage this
mixture short of maintaining all DDL and DML under
RCS or SCCS, and similarly, using the make compilation
utility to keep track of database-dependent objects, as
well as 3GL code.

Another aspect of this problem is that the need to
load/unload data structures such as trees and linked
lists (which are common in C programs) causes the
module to be specialized. It also is relatively inefficient
if host variables cannot be referenced as pointers in
a SELECT .. .INTO.

• A programmer must know not only the 3GL, but also
the relational database language and the
characteristics of the pre-processor.

If the programmer does not understand how to write
both languages, the interaction between the two is likely
to reflect the weaker understanding. This is especially
true in cases in which the 3GL programmer must explic
itly assert transaction or lock control. If the programmer's
knowledge of the 3GL is weak, the code interspersed
between SQL statements will be inefficient, and locks will
be held for unnecessary periods. If the programmer's
SQL skills are weak, unnecessary calls w ill be made to the
database, resulting in lower system throughput. Further
more, finding and retaining programmers with both SQL
and 3GL skills can be difficult and costly.

• The programmer will probably have to obtain help in
optimizing the SQL statements and then successfully
tra nslating the statements into appropriate
embedded statements in the context of the 3GL code.

This process requires a unique skill, since the syntax
of the SQL dialect when embedded in a 3GL is quite
different from the syntax when SQL is used inter
actively with, for example, SQL•Plus. With SQL, the use

r

' .

:\
' '

~

' '

u
p
D

Ur
A<
m

th
f e
th
f u
ye
m

of CURSORs, FETCH, etc.. may lead to translation prob
lems. It is not sufficient to have database personnel
optimize the individual SQL statements, since it is the
11•ork 1111it :1s implemented in a sequence of SQL state
ments that must be efficient.

A proficient SQL coder. knowledgeable about the
schema and the product being used, may achieve the
desired function more efficiently using a different se
quence of SQL statements than an application pro
grammer would use. Since application programmers
and database personnel are often in separate work
groups with different skill sets, the coupling between
the two kinds of code makes task division quite dif
ficult when managing development, deployment,
:ind maintenance.

• Source code must he recompiled and the entire
.~vstem relinked if any changes are made to the
emhedded SQL.

Even with dynamic embedded SQL, there are limitations
to how much a SQL statement can be changed before the
supporting 3GL must be changed. Where the rigidity sets
in depends upon the vendor implementation. While it is
possible with dynamic embedded SQL to write reason
ably general-purpose modules, the result is not as clean
as purely 3GL modules would be. Explanations include
the availability of a cursor context across modules, the
subtle differences in transaction management between
applications, and problems with error handling (e.g., can
a general purpose error handling routine be used as the
GOTO action in a WHENEVER clause?).

• It is costly to move embedded SQL code from one
relational DBMS product to another or between
uersions of the same product.

Many programmers develop efficient code at the ex
pense of portability. The features that differentiate prod
ucts also tend to make applications non-portable. Devel
oping an application around the least common denomi
nator-the common subset-severely restricts both the
creativity of the application designer and the benefits of
product evaluation and selection. The product then can
not perform to the full potential intended by its designers.

• 77Je source code is "mixed" with the database
schema.

This last item is by far the most costly. Large applications
will consist of many "database access routines." When
the database administrator decides to modify the rela
tional database schema, each of these routines will have
to be examined to see if they now access some modified
data element in an inappropriate manner. If a table is nor
malized into two tables, consider how this affects each
SELECT. .. FOR UPDATE and each UPDATE ... WHERE
CURRENT OF.

Short of a full data dictionary-such as· that envi
sioned with IRDS and partially supplied with

SQL*Dictionary-this impossibly complex task leads to
redundancy between the development and database
management environments. Even with such a· repository,
making the necessary changes to the source code can
consume many man-hours.

If the cost of this maintenance is high enough, many
organizations will forbid changes to the schema in order
to avoid the cost in time. expertise, or potential disrup
tion of the business. This coupling between application
code and database schema effectively removes one of the
primary benefits of a relational database-its flexibility.

Generalizing Database Access
The perspective promoted here is that the application has
responsibility for:
• Determining what data is sent to the database
• Determining what to do with data returned from the

database
• Specifying, in a functional sense only, what is to be

done by the database
• Nothing else pertaining to the database

The application code should not be coupled to SQL
specifics, nor to the database design. At the same time, it
is understood that existing applications must be migrated
to the database environment; hence, the ability to use
SQL-specific code need not be absolutely precluded.

ALCIE IV'M

THE FIRST ORACLE® BASED

GENERAL ACCOUNTING SOFTWARE

THAT KNOWS THE IMPORTANCE

OF YOUR BOTTOM LINE.

ALCIE IV the first proven 100% Oracle based general ·

accounting application software is the building block for your

financial future. Off the shelf covenience, powerful, flexible.

Calling CD DATA today may be your first step to improved

profits and that's the bottom line.· Affordable• Feature Rich·

True 4GL, 100% ORACLE Solution

Call us at (813) 323-2277 today

for more information and a list of

references taken from over 100 of

our installations.

CD DATA CORPORATION
2887 22nd Ave. North· St. Petersburg, Fl 33713

(813) 323-2277 •FAX (813) 327-0461
Reseller Opportunities Available.

Also available lhrOUQh: Coml>u12rtitre Netwol1tCo/pora1ion, Canada·CSP. FarE"'& So. Paci!ic.
Al.CIE IV" isa ltademal1<olCO OATACo<poration. ORACUisa~tradematkotOracloCo<poration.

CIRCLE NO. 26 ON READER SERVICE CARD

Sl'\l\IEH 1990 c,-

..... ... _ _ , ... _ ... -. ... ·- _

Coding unique routines for eac.:h application SQL
block is superfluous. Indeed, failing to isolate code from
data often leads to maintenance inefficiencies. Vendors
that follow the ANSI commi1tcc approach support vari
ous techniques using embedded SQL. SQL is embedded
explicitly in the code, and a preprocessor (such as the
Oracle precompiler) is used to convert the lines (some
rimes preceded by a special symbol) into function calls to
rhe database.

Oracle's precompiler performs this process, substi
ruring the appropriate function calls and data declara
tions. These function calls are buih on top of the OCI.
Some vendors, including Oracle, allow the embedding of
certain statements by reference so that they can be al
tered during the run of the application. This is called
dynamic SQL.

Fortunately, Oracle Corporation and a few other re
lational DBMS vendors allow the programmer to code
the function calls directly to the database. The OCI is
one example of a documented ri.tntime function call
interface. Documented in the Pro•c manuals, it is a
powerful set of functions providing for logon/logoff,
cursor open and close, che parsing and execution of
arbitrary SQL statements, and the dynamic description
and fetching of SELECT results. More recently, powerful
·array fetch" and "transaction execute" functions have
been added.

Direct manipulation of results data, update parame
ters, and 3GL data structures can be very powerful and
efficient with OCI. 3GL programmers can use structures
such as trees and linked-lists in a manner familiar to
them. Functionality is not Jost and may even be improved
over embedded SQL. This method requires no additional
coding-a library of high-level functions using OCI can
actually eliminate tedious and proliferating EXEC SQL
statements, reducing the amount of detail to which a pro
grammer must attend.

It is a common error for the programmer to hardcode
the SQL statement as an argument to the database vendor
supplied function. These errors can be eliminated by the
development of a flexible development library using OCI.
There is no need to recode the vendor-supplied function
calls for each application if developers pay proper atten
tion to the usual rules of cohesion within modules and
loose coupling between modules. Data, including SQL
statements, should never be hardcoded.

Data coupling of the application code to the rela
tional DBMS is an error that can occur whether a devel
oper uses a function call interface or embedded SQL.
Data "Coupling (or binding) can occur at preprocessor
time, compile time, link time, or runtime, with the latter
being the only truly flexible method.

Even if the data is relatively isolated by creating a
macro-defined symbol that the 3GL pre-processor (e.g.,

ALCIE IV N

THE FIRST ORACLE• BASED

JOB SHOP MANUFACTURING

SOFTWARE THAT KNOWS

THE IMPORTANCE OF MANAGING

FROM START 'Tb FINISH.

ALCIE IV Job Shop Manufacturing combines job cost and

shop floor management into one powerful management sys

tem. Management from start to finish, that's the beginning of

higher profits through better control. •Affordable· Feature

C 0 DATA CORPORATION
2887 22nd Ave. Norlll •St. Petersburg, R. 33713

(813)323-2277 •FAX (813) 327-0461
~ OpportunitiesAvailable.

•-IWOllQlr~-~~·CSP.f•~&so.-.
Al.CEff'"1&1.-o1CDOOA~OIUICUis1~-oCOoWt~.

CIRCLE NO. 26 ON READER SERVICE CARO

SllMMER 1 QCXl (.,q

.. : .•.

..

l'ro*C) \\'ill expand at compile time, the code becomes
strongly coupkd to the eccentricities of the DML (includ
ing hugs) and to th<.: tbtabase design.

This latter error is severe; changes to the database
design invariably lead to modifications of the application
code. If the cost of the application modifications
required to implement a change in the database design
is great enough, the database design becomes fixed,
eliminating one of the key benefits of a relational data
base: its 111ut;1hility.

If the database vendor supports stored blocks, pro
cedures or scripts that can he stored (perhaps in the
database) and invoked by name, SQL can be removed
from the code altogether. for example, PL/SQL can be
stored in a client file or database and automatically loaded
for execution at program initialization, or as each proce
dun.: is referenced.

Hm,·ever, l\VO problems remain. First, the code sup
porting the execution of the SQL command is sensitive to
the particular SQL st:.itements \Vithin the SQL command.
Second, the linkage between c0de data structures and
the data structures SQL requires to inrerface to the vendor
database is defined within the code and remains to couple
the database schema to the application, and vice-versa.
Both problems can be addressed using dynamic alloca
tion of variables, access to the SQLCA structure, and the
OCI functions ODEFIN, ODSC, and OBNORN.

. ' :: .
9

·:.
.·. ~

ORACLE 1990

INTERNATIONAL

USER WEEK

than 4,000 ORACLE
users, VARs and OEMs

at the next Oracle
International User Week,

Anaheim lliltonTowers,
Anaheim, California,

St.>ptember 23-28,
reaturing:

Presentations by Oracle
executives and industry analysts

•
T echnica I seminars

and open forums

•
Complimentary

educational mini-lessons

•
For further information
contact 800-441-4684

Tradeshow exhibits of
over 150 companies

•
Keynote speaker luncheon

Even with such requirements for careful design, the
use of external SQL procedures is justified by the result
ing efficiency and database schema independence.
When routines for processing SQL are written once, they
can he highly optimized for performance. The applica
tion also obtains database schema independence, since
all SQL code is localized and may he managed within
the database.

Database schema independence helps IS managers
assign SQL experts to SQL and 3GL experts to the use of
3GL functions. When a SQL command or procedure needs
to be changed to reflect a change in the database schema,
no changes to 3GL code need be made as long as the
inputs and outputs remain unaltered. External SQL pro
cedures can also provide a measure of relational data
base support for object-oriented programming techniques,
since they can he treated as methods for objects.

Conclusions
The most important tool for deve loping a relational ap
plication is a sharable library for processing SQL requests
transparently. The tool should be accessible from a mun
ber of ?>GL languages and should not he bound to any
particular database or sequence of SQL statements. The
OCI is ideally suited to achieving such objectives. In fact,
using OCI has been my preferred method of developing
ORACLE applications. •

ALCIE IV TM

THE FIRST ORACLE® BASED

DISTRIBUTION SOFTWARE

THAT KNOWS THE IMPORTANCE

OF PUTTING YOUR PRODUCT

IN THE FAST LANE.

For the distributor, repeated turns on your inventory puts you

and your products in the fast lane. ALCIE IV provides the

proven system for effective distribution management;

through inventory control and reduced carrying costs, that

will keep you rolling.· Affordable· Feature Rich• True 4GL,

100% ORACLE Solution· Flexible.

Call us at (813) 323-2277 today for

more information and a list of

references taken from over 100

of our installations.

CD DATA CORPORATION
2887 22nd Ave. North •St. Petersburg, FL 33713

(813) 323-2277 ·FAX (813) 327-0461
Reseller Opportunities Available.

Alsoavailablelhroooh: ComputertimeNetwoi1<Cof)loralion, Canada•CSP. Far East & So. l'ilci!ic.
AlCIE ivw isa lr.ldemar1<of CO DATA Cof)loration. OAACU isa ~lr>demart<otOradeCO<poralion.

CIRCLE NO. 26 ON READER SERVICE CARD

SUMMER 1990 7 1

